An Open Image Theorem for a General Class of Abelian Varieties

نویسنده

  • CHRIS HALL
چکیده

Let K be a number field and A/K be a polarized abelian variety with absolutely trivial endomorphism ring. We show that if the Néron model of A/K has at least one fiber with potential toric dimension one, then for almost all rational primes `, the Galois group of the splitting field of the `-torsion of A is GSp2g(Z/`).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Image of L-adic Galois Representations for Abelian Varieties of Type I and Ii

In this paper we investigate the image of the l-adic representation attached to the Tate module of an abelian variety over a number field with endomorphism algebra of type I or II in the Albert classification. We compute the image explicitly and verify the classical conjectures of Mumford-Tate, Hodge, Lang and Tate, for a large family of abelian varieties of type I and II. In addition, for this...

متن کامل

Hodge Structures of Cm-type

We show that any effective Hodge structure of CMtype occurs (without having to take a Tate twist) in the cohomology of some CM abelian variety over C. As a consequence we get a simple proof of the theorem (due to Hazama) that the usual Hodge conjecture for the class of all CM abelian varieties implies the general Hodge conjecture for the same class.

متن کامل

Titchmarsh theorem for Jacobi Dini-Lipshitz functions

Our aim in this paper is to prove an analog of Younis's Theorem on the image under the Jacobi transform of a class functions satisfying a generalized Dini-Lipschitz condition in the space $mathrm{L}_{(alpha,beta)}^{p}(mathbb{R}^{+})$, $(1< pleq 2)$. It is a version of Titchmarsh's theorem on the description of the image under the Fourier transform of a class of functions satisfying the Dini-Lip...

متن کامل

Restriction of Sections for Families of Abelian Varieties

Given a family of Abelian varieties over a positive-dimensional base, we prove that for a sufficiently general curve in the base, every rational section of the family over the curve is contained in a unique rational section over the entire base. 1. Main results sec-intro The starting point for this article is the following theorem. Theorem 1.1. [GHMS05, Theorem 6.2] Let B be a smooth, quasi-pro...

متن کامل

Cycles in the De Rham Cohomology of Abelian Varieties over Number Fields

In his 1982 paper, Ogus defined a class of cycles in the de Rham cohomology of smooth proper varieties over number fields. This notion is a crystalline analogue of `-adic Tate cycles. In the case of abelian varieties, this class includes all the Hodge cycles by the work of Deligne, Ogus, and Blasius. Ogus predicted that such cycles coincide with Hodge cycles for abelian varieties. In this paper...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008